Increase Mobile Retention 101: what is it and why it’s important

[fa icon="calendar"] 19-Dec-2017 13:26:52 / by Simon Singharaj

Written by Gabor PappGrowth Marketer @ Shapr3d

In our upcoming 3 part series, we’ll dive deep into what retention is, why it is important, how to keep your startup alive by focusing on retention and what tips and tricks you can use to improve it.

This is the first part of an e-book in 3 chapters covering retention.


Pre-register NOW


Focus on retention to keep your company alive

Simply put, retention is the measure of how many users return to your product over time.

It’s inevitable to lose a significant portion of users even in a few days. Even for the best products.

Based on Quettra’s data, the average app loses 77% of its DAUs (daily active users) within the first 3 days. In 30 days, it’s 90%. After 90 days, it’s over 95%. So the retention rate for the average app after 90 days is around 5%. That’s very low.

So if you want to grow your company, you need to focus on retaining users, therefore increase mobile retention. Retention is really the foundation of all growth as it directly impacts the virality, the lifetime value (LTV) or even the payback period for any product.

In most cases companies and software products look at what we call N-day retention. This is probably the most spread retention metric you’ll find reported anywhere.

N-day retention shows what percentage / portion of users come back on the ‘Nth’ day after their first use of the product. In practice it means that if 100 people signed up yesterday, and only 10 came back, my 1st day retention (N=1) is 10% (10/100). By looking at multiple days in a row, you can plot these retention values over time and draw a retention curve highlighting these values.


This is what we call an app retention curve.R1.jpg



A curve like the blue one shows a weighted average of all Nth day retention values for all user cohorts in a certain time period.

Let’s assume that today is December 31st. So 365 days have passed from the year. I have 364 1-day retention numbers. 363 2-day retention numbers. 362 3-day retention points. And so on. By weighting the averages of all these data points, we can come up with a curve like the above one. So the app retention curve shows the average percentage of active users every day within a specific timeframe.

In real life many companies and startups look at specific Nth day retention dates and compare those to each other and industry benchmarks. The most common ones are the 1-day, 7-day and 30-day retention numbers, also referenced as D1, D7, D30 retention. This is a good metric if the usage of your product is daily. It is not a good metric though if you are not operating in a day-to-day usage type of industry (like an accounting or tax software).

To get a better picture for the usage, you can focus on weekly, bi-weekly or monthly retention numbers too. In this case you can look at a bigger timeframe, not just specific days. So if you have a 40% week 1 (W1) retention, it means that 40% of users come back at least once in 7 days (1 week) after signing up. It could have happened on day 1 (D1) or even day 4.


Product-Market Fit

A company can successfully and sustainably scale its userbase if it can retain users. When there is a certain amount of people using the app on a regular basis, we say that the company has reached product-market fit (PM-fit).

The definition of product-market fit is very vague. There are multiple ways to look at it.

According to Mark Andreesen: Product/market fit means being in a good market with a product that can satisfy that market.

As he puts it: “You can always feel when product/market fit isn't happening. The customers aren't quite getting value out of the product, word of mouth isn't spreading, usage isn't growing that fast, press reviews are kind of "blah", the sales cycle takes too long, and lots of deals never close.”

This concept is great, because it’s very general, so you can apply it to multiple situations. But it lacks some clarity and definition.

Brian Balfour describes the phenomena more qualitatively and quantitatively: “If your retention curve flattens out, you have product/market fit (Product A).” It could be only for 5% of your userbase, but for those, you have product/marketing fit. If the app retention curve will drop to zero, you don’t have PM-fit (Product B).



Sean Ellis test

Sean Ellis, the person who coined the term growth hacker, put this in a more quantitative way a few years back: “I asked users a simple question.

How would you feel if you could no longer use [product]?

  1. Very disappointed
  2. Somewhat disappointed
  3. Not disappointed (it isn’t really that useful)
  4. N/A - I no longer use [product]

This is called the Sean Ellis test. If over 40% of the users respond to the survey saying they'd be "Very disappointed", there's a good chance you have found Product/Market Fit. Sean Ellis compared data from over 100 startups back in the days and found that those companies who had a 40%+ answer rate to the first option had strong traction. While those who were scoring lower had no or small traction. It is advised to ask at least 50 users to get statistical significance, but the more you can ask, the better of you are.

Sean generally recommends to survey the following users:

  1. People that have experienced the core of your product offering.
  2. People that have used your product at least twice.
  3. People that have used your product in the last two weeks.

By looking at any of the three definitions, it’s hopefully more clear now how you can look at and define retention.

There are certain tips and tactics how you can improve the user retention. The two most common ones are to:

  1. Shift the retention curve up.
  2. Flatter the retention curve.

Shifting the curve up focuses mostly on the first-time user experience, the onboarding flow and tries to pass along the core value of the product to new users.



On the other hand flattening the curve increases the baseline level of users delivering a better product experience over time, so it results in long-term user retention.



Of course you can not only look at the portion of active, retaining users (like W1 = 23%), but you can track the net number of users too in a certain timeframe. The most common metrics for this category are DAU (daily active users) or MAU (monthly active users).

To define any retention metric, you first have to settle on what the core action is that you measure against. In other words, what qualifies a user as active? Is it opening the app? Is it visiting the website? Is it creating a new project? Is it adding a new contact?

The answer depends on the nature of your product. If you are a social app, the number of friends you add, the conversations you have, the time you spend consuming content are good indicators of a core action to measure against. If you are a project management tool, then you want to track how many active projects are in the user’s profile, how often they create and complete projects, how well they collaborate. If you have a PM tool, but have no projects in it, no matter how many times you open it, you’ll unlikely to be a successful / active user. Defining the right and correct retention metric has a great impact on your future success. That is a topic we are going to cover in the next part of the series.


What’s next?

In second part of the series we’ll look at how you can define important retention benchmarks and frameworks for your company you can later leverage. Based on these, we’ll cover what type of retention dashboards should a startup use at a given stage.

The third part will cover retention improvement tips, trick and industry benchmarks.

If you don't want to miss the articles, pre-register to The Retention E-book by submitting the form below and once it is published, you will receive a copy of it. 


Topics: Guides & Tutorials

Simon Singharaj

Written by Simon Singharaj

Director of Marketing

Related posts